
Cross-platform Desktop Application Development with
JRuby and Swing

Copyright 2014 James Britt / Neurogami
Originally published in 2007.

Ruby for the desktop
The Ruby programming language is currently best known for building Web applications,
primarily with the Ruby on Rails framework. However, Ruby is more than capable for
writing graphical desktop applications as well.

The standard Ruby distribution includes code for bindings for Tk, an open-source, cross-
platform set of widgets that allows you to create graphical desktop applications. This can
be extremely handy, but when installing Ruby from source code you need to be sure you
also have the Tk dependencies and make sure the compilation settings include Tk.
Further, if you are using Ruby on Windows installed using the excellent “one-click”
installer package, you still have to take extra steps to have Tk working, since it no longer
supports automatic installation.

Even with Tk set up for Ruby it is somewhat clunky. Tk applications often look like Tk
applications; depending on the target platform it can look somewhat ugly. Plus,
attempting to create complex interfaces is daunting. Tk is best used for smaller GUI
needs.

Available Toolkits
The weakness of Tk has prompted the development of other GUI toolkit options for
Ruby. Here are the some of the notable choices:

FxRuby
FxRuby is a Ruby binding for Fox, a GUI toolkit written in C++. It is available for
installation using rubygems. There is a binary gem available for Windows; the gem on
other platforms will require you to compile native code.

WxRuby
WxRuby is a binding for the cross-platform wxWidgets C++ GUI toolkit that allows the
creation of native-looking desktop applications. It is available for installation as gem.

QtRuby
QtRuby gives you Ruby bindings to the Qt toolkit (the one used in the KDE desktop
system). There is a gem for the Windows installation, but only source code for other
platforms.

GTK-Ruby
GTK is the UI toolkit used in GNOME; you'll need to compile native code to get this
running.

Shoes
Shoes is a recent entry into the Ruby GUI widget world. Unlike the previously
mentioned toolkits it is designed specially for Ruby. It is available for installation using
platform-specific installers.

Swing
Swing? Yes, Swing, the GUI library that is bundled with every installation of a Java
runtime environment. If you run JRuby, then you can use Swing.

All but one of these are GUI or widget libraries written in C or C++, with bindings that
allow them to be called from other languages, such as Ruby, Python, and Perl. In almost
all cases you'll have to face a number of considerations, such as installation, distribution,
and such.

Considerations for selecting a GUI library
What GUI tool set you use will, of course, depend on your particular needs. Here are
some criteria to consider:

● A rich set of widgets or components
● Solid implementation
● Availability on multiple platforms (mostly Mac, Win32, KDE, and Gnome)
● Native look-and-feel for hosting platform
● Actively maintained
● Ease of creating custom widgets
● Non-restrictive license
● Affordable cost
● Existing frameworks and libraries to speed development
● Mature IDEs and form layout tools
● Testing tools and frameworks
● Ease of packaging and deployment

If all you want is to toss up the occasional message box, or ask a user for some simple
input, almost any of the mentioned toolkits will do. For simple requirements you are
likely best to focus on platform availability, a suitable range of widgets, and appropriate
cost. If you plan on distributing your application you'll want to check the toolkit
licensing. You also must be sure that either the end-user will already have the required
environment or that you can easily bundle up all the needed libraries and widgets in
either a standalone application or a installation package.

Once you move to more complex applications, though, the requirements get tougher. For
any application that goes beyond a few simple forms you almost certainly want to have a
form designer tool. You'll also want a rich set of available widgets; you're usually better
off reusing, for example, an existing date picker or file browser component than writing
your own.

While the various C-based Ruby GUI toolkits each have there share of good qualities,
none of them has emerged as a clear winner. They offer no obvious choice for general
Ruby cross-platform desktop development.

They each, to varying degrees, have issues with installation, documentation, design tools,
packaging, and deployment. Notably, none of these can beat, feature-for-feature, the one
non-C option.

Leveraging an existing technology: Java
JRuby is an implementation of Ruby for the Java platform. It allows you to execute
Ruby code through the JVM. Ruby code running under JRuby can also load and use Java
libraries, and that includes Swing.

Whatever your feelings about Java the language (often a contentious topic among Ruby
programmers), it's hard to deny certain aspects of Java the platform:

● Solid and well-tested
● Strong community and vendor support
● Good, plentiful documentation
● Excellent choice of IDEs and UI layout tools
● Free to use (both in cost and license)
● Probably already installed on end-user's machines

If you write an application in (J)Ruby and use Swing for the UI, you need only ensure
that the end user has a recent version of the Java runtime, and package your application
to include the JRuby jar. And there's a Ruby tool for JRuby application packaging,
making that part a non-issue.

Some arguments against JRuby + Swing
On the bright side, there are boundless Swing components; on the dark side, they are
Swing objects; while you can load these into your Ruby code, you will need to know
their assorted APIs and syntactical quirks. There is copious Swing documentation and
examples, but unless and until people write Ruby wrappers around then there is no
getting around having to get your hands a bit dirty with some raw Swing code.

A second common objection is that Swing may not look quite as slick or native as, say,
Qt. However, things are not what they used to be, and Swing can now look quite good.

Weighing the a Java platform against a C-based tool, you'll have to make some choices
and decide what's most important. For example, Swing is completely free to use, while
Qt has various costs sand restrictions for commercial and open-source applications. On
the other hand, the look-and-feel of the Qt components may be better for your program.

Developer options for (J)Ruby + Swing

There are a number of options for using Swing from Ruby

Raw, hand-coded, in-line calls to Swing objects
In the simplest case, you can refer to Swing objects much as you would any other Ruby
object:

panel = Java::javax::swing::JFrame.new("JRuby panel")
panel.show

“Builder” and DSL-style libraries
Constructing panels and forms then adding component all in hand-rolled code can get
tricky quite fast. Some libraries exist to make the Swing interaction more Ruby-like. For
example, Cheri::Swing uses Ruby block syntax to generate the Swing code.

Another library, Profligacy, offers a Ruby wrapper around the raw Swing calls to help
you write more Swing code with less raw Java code. You'll still need to get familiar with
th Swing API docs to make proper use of the Swing components.

Both of these approaches presume the creation of panels and forms and layouts using
hand-crafted code. While an improvement on doing this with straight-up Swing code,
they still suffer from an inability to handle complex user interfaces.

The “We don't care where the Java class came from” approach
A third approach is to simply punt on trying to ease the creation of Swing objects using
Ruby code, and start from the assumption that a compiled Java class for the Swing
objects already exists.

This is the approach taken by the Monkeybars library. There are a number of very good,
free, graphical Swing UI layout editors. As with the use of the previously mentioned
GUI toolkits (e.g., Fox, GTK), you don't need a UI editor for the occasional dialog box.
But it's hard to beat such a tool for anything more than that, and it's pointless to skip these
tools and code the UI by hand for a sophisticated desktop application. So go for it.

Monkeybars
Monkeybars is a Ruby library that connects existing Java Swing classes (that is, compiled
Java classes that define your Swing UI) to Ruby code using a form of MVC. MVC , or
model, view, controller, is a design pattern aimed at separating view logic and user
interface components from application logic. Monkeybars is an open-source project that
grew out of product development at Happy Camper Studios. It is actively maintained and
completely free to use as you see fit, and has evolved based on experience trying to create
testable, maintainable complex Ruby desktop applications.

Since it uses the Java language and Swing libraries it is building on mature, robust
technology. Unlike other current Swing libraries for JRuby it is well-suited for
constructing large, complex, multi-paneled applications. As we'll see, there is some
overhead in creating a Monkeybars application, so it may not be your best choice for
simple forms. It is, however, a reasonable choice for a JRuby desktop application of
any complexity when you need:

● Reliable cross-platform deployment (assured to the degree that the end user has a
recent JVM installed)

● A large choice of UI widgets of arbitrary complexity
● Possibly complex UI form/panel construction and interaction

As with Profligacy, Monkeybars does not hide the Swing API. Nonetheless, because it
works with compiled UI classes, you can make full use of any tool or application to
generate the actual layout. Depending on the complexity of your application it is almost
inevitable that at some point you will need to reference Swing component API
documentation and code examples to know what to do in your Ruby code. (But because
of the nice integration of JRuby and Java libraries you can easily wrap such Swing code
in a Ruby API for easier reuse.)

An example JRuby Swing application using Monkeybars
To get a feeling for building for creating a desktop application with Swing and Ruby,
we'll take a tour through a simple
program created using
Monkeybars.

Installation
To get started you'll need to have
a few things in place. First, you'll
need a copy of the jruby­
complete.jar. The simplest
way is to download the file from

http://dist.codehaus.org/jruby/.

Next, you need to install the Monkeybars library. You can install it as a gem:

 sudo gem install monkeybars

You can also grab the current source code from the repository on gitorious.org
(http://gitorious.org/projects/monkeybars).

Finally, you need to install the rawr gem. Strictly speaking , it is not required when
writing a Monkeybars application, but it provides a number of useful Rake tasks for
turning a JRuby application into an executable jar file and this example will use it.

sudo gem install rawr

Why Swing instead of SWT?

● Swing is a part of Java; if a user has Java,
they have Swing.

● Swing allows for more fine-grain control
of component behavior

● Swing components offer more flexibility
over how components may look

Application basics
Programs built using Monkeybars can be arbitrarily complex, but there are some basic
patterns to follow to keep the code manageable. The example application will be a “flash
card” program: it will read in a text file that defines a number of “cards”; it will loop until
shut down, periodically showing and hiding itself for brief periods. Basically, it's a tool,
for learning . For this example the cards will be a set of German vocabulary words
and phrases. The program will also read a configuration file that defines the location of
cards definition file and a few settings (show/hide speed, window size).

The goals of this example are to:

● Show the use of Monkeybars code generators, which automate the creation of
common files

● Show the basic structure of a Monkeybars application
● Demonstrate the creation of each part of the Monkeybars MVC tuple
● Show how Monkeybars handles the mapping of application data to UI

components
● Show packaging the application as an executable jar file

The Monkeybars approach to Model View Controller
The MVC pattern has a long history, with numerous variations. Here's how it works in
Monkeybars:

The basic presumption is that for each Swing frame (that is, the UI object holding
assorted components or widgets; in some cases this may be modal panel) there are three
Ruby files: a model, a view, and a controller. The model class holds the essential
business logic and manages the data corresponding to that part of the application. It
should be ignorant of any view or controller code which exist as a means to interact with
the model. Keeping view and controller references out of your model makes it much
easier to develop and test.

The view is another Ruby file with a reference to a specific Java class containing the
compiled Swing code. The view manages the interaction of Swing components with
model data. While the view may have direct contact with the model, it also works with a
copies of the model as mens for passing data to the controller. This is important to keep
in mind when designing your model class, since it ends up serving a dual purpose. The
primary instance of the model is keeping long-term state and providing application logic;
the copy used by the view is essentially a disposable data access object. Models should be
relatively cheap to instantiate, with shallow accessors provided for any data used by the
view.

The view does not have direct contact with the controller. Instead, there is a signaling
system in place to abstract the interaction of controller and view. This decoupling makes
it easier to test your views and controllers.

(This description is deliberately simplified and omits various details. Under the hood
there is closer interaction between view and controller; the infrastructure needs the
means to coordinate behavior. The goal of Monkeybars is not to tie your hands but to

assist you in creating testable, maintainable code. As a developer, though, you are free to
bypass the intended API if you see fit.)

The controller class is where you define handlers for Swing events (such as button clicks
and text field changes) and control the state of into the model. The controller keeps a
reference to the primary instance of the model. It does not communicate directly with the
view.

When a controller wants to get data from the view, the view provides a copy of the model
populated with the current UI contents. The controller can then decide to update the
primary instance of the model with this data, or take some action based on these values.
The controller can also tell the view to update itself and pass back updated values. We'll
see this in action in the example.

Using the Monkeybars application generator script
Once installed, Monkeybars provides a command line script to create an initial set of
application files. To start a new Monkeybars project you should execute the
monkeybars script that is installed with the gem. We'll name our project
monkey_see:

$ monkeybars monkey_see

This will create a new directory at the given path (or in the current directory if you only
give an application name) and add core files and directories for the new application.

Using Rawr to bootstrap the code into the Java environment
Rawr is another Ruby library that grew out of Monkeybars. It handles assorted
packaging tasks, and provides a command line script for creating a base Java class that a
Monkeybars application can use to allow execution as a Java program (as opposed to
running the application as a Ruby program via JRuby).

You use it with your Monkeybars application by going to your project directory and
executing the rawr script:

$ cd money_see; rawr install

Using Monkeybars Rake tasks to generate files
We've seen how Monkeybars splits things up into model, view, and controller. The
convention is to place these files into the same directory. The help this along,
Monkeybars provides a Rake task to generate these files.

You can create one of the three, or a full set (the more common case):

$ rake generate ALL=src/flash

This will create a subdirectory flash under src/, with three files:
flash_controller.rb, flash_view.rb, and flash_model.rb. The first

two will have bare-bones classes that inherit from base Monkeybars classes. The model
code does not; Monkeybars makes zero assumptions about how you manage your
application logic and data; that is entirely up to you.

Creating the UI
For the application's interface we need a Swing class that will display the flash card data.

How you create this this is up to you; there's nothing in Monkeybars that ties to any
particular UI tool or Swing code generator. By convention, the Swing files get placed in
the same directory as it's related tuple (I.e. src/flash/FlashFrame.java). You'll
need to know the class package so we can pass it on to the view class. (We'll be using the
package flash and name the class FlashFrame.)

 Our screen layout should look like this:

A few key points: We want to use a JTextPane for the flash card content so we can use
HTML to format the rendered text. We also want to use sensible names for the text pane
and the button. It just makes it easier when you're working with the view to know
something about the UI components. Since the program code is in Ruby , use Ruby
method name conventions; call the text pane card_pane, and the two menu items
edit_menu_item and quit_menu_item. Give than accelerator keys, too.

The name of the frame itself is not important; the view class can reference the
components directly by name.

Defining the model
The model manages the application logic and data behind a given UI. A Monkeybars
program will generally have a model for each Java form. Our application has but one
model to handle the flash card data. The model code needs to be able to load data from a
known location, and offer a public method to provide that data.

For simplicity we'll store the data in a text file in a subdirectory from where the
application is running . Rather than hand-code HTML, we can use Textile markup and
transform it using the RedCloth Ruby library. Each card entry will be separated by a
delimiter string.

Using 3rd-party libraries

Textile is a text markup format that is intended to define HTML using simple plain-text
conventions. For example, to indicate italicized, you instead write
italicized. RedCloth is Ruby library, available as a gem, that converts Textile
formated text into HTML.

Rubygems makes it quite easy to install and use 3rd-party libraries, but as we will want to
package our code in a jar and potentially distribute it to people we need to be sure that all
code is included with the application. To do this, you need to unpack the RedCloth gem
and copy the redcloth.rb file the project's ruby/lib/ directory.

$ cd /tmp; gem unpack RedCloth

This will create /tmp/RedCloth­3.0.4 /(unless you have a different version of the
gem installed). Copy /tmp/RedCloth­3.0.4/lib/redcloth.rb to the
lib/ruby/ directory of your monkey_see project.

In general, any Ruby libraries that are not core parts of your application should go (as a
convention) under lib/ruby/. If you are using gems, you need to unpack the actual
library files and add them to your project. Later in this article you'll see how to tell your
program how to find these files.

Key model methods

The load_cards method will handle reading in the text file from disk, splitting out
each card, and assigning the results to the @cards instance variable.

A select_card method will pick a card at random and assign it the
@current_card instance variable. We'll use attr_accessor to define methods
for reading and setting this variable.

We'll arrange it so that whatever card is being displayed in the UI may be edited in-place.
After editing, the update_current_card method will take the contents of
@current_card and reinsert it into the @cards array. A save method will write the
@cards array back to disk.

The value of the current_card method is what we want to render, and to do that,
we'll need a view class.

Defining the view class
A Monkeybars view class is the owner of the Java Swing class. If you open up
flash_view.rb you'll see that it invokes a class method, set_java_class. This

should be set to the Swing class defined for this view. In our code, this is
flash.FlashFrame.

In general, a Monkeybars view class needs to do a three things: pass data in and out of
the Swing components; manage assorted view-centric behavior (such as size and
position); respond to signals sent from the controller.

Mapping data

Monkeybars provide a map method that allows you to define how model methods are
wired up to Swing controls. The simplest usage connects a UI component method and a
model method:

 map :view => :card_pane.text, :model => :current_card

This mapping will use the default behavior of making this a direct, two-way association.
That is, the results of the text method of the card_pane component will be passed to
the current_card= method of the model. When updating the view from the model, it
is reversed: model.current_card will populate card_pane.text (note: JRuby
handles Ruby/Java naming conversion, so the actual Swing method, setText, may be
invoked using set_text =).

Quite often this form of simple mapping works fine, but there are times when, because of
differences in data types or formatting, or due to the needs of some application logic, you
don't want direct data exchange. Monkeybars allows the use of intermediates in the data
exchange. A mapping can be passed a :using parameter (that is, a hash key pointing to
an array) that indicates the alternative means to use when moving data from the model to
the view, and from the view to the model. (Another reason for :using is when the
value or state of a Swing component needs to be manipulated using component methods
or child objects that do not fall into the general getProperty and setProperty
pattern.)

For our code we want to take a Textile-formated string from the model and convert it to
HTML before assigning it to the card_pane text property. To handle this we'll
create a to_html method. We also don't want to directly update the model's
current_card value from the view. We'll have some special code for editing cards
in the view, so we'll use nil in place of what would otherwise be some view-to-model
method name.

That gives us this map:

 map :view => :content_pane.text,
 :model => :current_card, :using => [:to_html, nil]

We'll also want our Swing frame to present itself in a specific manner. By default, a
Swing frame will appear in the top left corner of the screen. For our application we want
it to show in the top right corner. We'll also give it a nice sliding effect so that it does not
abruptly come and go.

Managing the Swing object

A view class has a special instance variable @main_view_component that references
its corresponding Swing class. It is through this object that view code interacts with
Swing components. To change the content of the flash card text pane, for example, you
could write

 @main_view_component.card_pane.text = “Some new text”

However, since this kind of code is essentially the reason the view class exists,
Monkeybars arranges it so that you can omit explicit use of
@main_view_component and refer directly to its components:

 card_pane.text = “Some new text”

The base Monkeybars::View class uses method_missing to intercept such code,
looks to see if it is a component reference, and if so it delegates the request to
@main_view_component.

Method calls on the Swing class, though need the explicit reference:

 # width = 500 # Fails; no such method as 'width'
 @main_view_component.width = 500

To achieve a nice sliding effect the view class has methods that manipulates the height
and position of the Swing frame, gradually expanding and contracting it so that, on each
rendering cycle, it slides down from the top of the screen, then slides back up.

Handling requests from the controller

Monkeybars is designed to decouple key parts of the MVC tuple. Since the view has a
direct reference to a Java Swing object it is typically the hardest part to test. Monkeybars
aims to reduce direct view interaction with the model and controller. The controller,
however, is responsible for handling UI events. Inevitably this means the controller
needs to direct the view to respond. The controller, though, does not directly
communicate with the view class. Instead, it uses signals.

We'll see the controller side of this shortly. In the view, you need to define signal
handlers using the define_signal method. It takes a hash defining a signal name
and a view method to handle that signal.

define_signal :name => :initialize,
 :handler => :do_roll_up

Handler methods must take two arguments: the model (passed in from the controller), and
a transfer object. The transfer object is a transient hash used to move data back and forth
between controller and view. Our view will have signals defined for the initial
positioning of the UI, the slide in, slide out sequence, and two for beginning and ending

card editing. Each of these signal handlers is quite short. Here's the do_roll_up
method:

 def do_roll_up model, transfer
 hide
 move_to_top_right
 roll_up
 end

The editing sequence will be triggered through menu events. The Edit menu item
toggles editing. In the view, the editing sequence means setting
card_pane.editable = true, then swapping out the HTML-rendered content
with the raw Textile card text. We also have to change the content-type of the
component so it will correctly render plain text.

When editing is complete, the reverse is done. The pane is given HTML, and
editable set to false. The view is only concerned with managing the state of the
Swing component; the controller will handle instructing the model to perform the text
updating and saving.

Defining the controller class
Our Swing object has some menu items, but we've not put any code for them in the view
class. That belongs in the controller. The controller handles all UI events, such as
button clicks, menu selection, and text field changes. Monkeybars arranges it so that by
default all such events coming from the Swing code are quietly swallowed. You need to
define event handlers for just those things you care about. In our code that would be
menu clicks.

Event handlers take this form:

 def your_component_name_action_performed
 # code
 end

(You may also define the handler to take the actual Swing event as a parameter should
you want your code to use it.)

To handle the Quit menu item we just need to exit:

 def quit_menu_item_action_performed
 java.lang.System.exit(0)
 end

The Edit menu action needs a bit more:

 def edit_menu_item_action_performed
 if @editing

 @editing = false
 signal :end_edit
 update_card
 else
 @editing = true
 signal :begin_edit
 update_model view_model, :current_card
 end
 end

The code handles the toggling of editing modes, using signals to drive the view. The key
thing to note is how card text is moved using the controller's model instance (implicitly
passed to the view by way of the signal), and the view's copy of the model, provided by
the view_model method.
Whenever a controller need the current state of the user interface, it can use the
view_state method to reference the view's copy of the model and the current transfer
object. Since grabbing the model copy from view_state is so common, Monkeybars
provides the the view_model method.

Our controller will also have a method to kick off the initial rendering, and another that
handles the show/hide display sequence. Both use signals to defer the actual presentation
code to the view.

Orchestrating the application
In addition to one or more MVC tuples, a Monkeybars application uses two key helper
files to prepare and run your code.

Both are in the src/ directory. The manifest.rb file sets up library load paths, and
allows you to define what files are to be included based on whether the program is run
straight from the file system or from a jar file.

Earlier we added redcloth.rb to lib/ruby/. In order for your application to
locate this file you need to add that directory to the load path. The same goes for the
lib/java/ directory, So, make sure that manifest.rb has these lines:

 add_to_load_path "../lib/java"
 add_to_load_path "../lib/ruby"

Also in src/ is main.rb. This is the Ruby entry point for the application. Among
other things, it defines a global error handler and is where you would place any platform-
specific code to run prior to executing main application logic.

Our program will use a simple loop:

begin
 flash_card = FlashController.instance

 flash_card.init_view :flash_interval_seconds => 8,
 :show_for_seconds => 20,
 :window_height => 200,
 :data_src => 'data/cards.rc'

 while true do
 flash_card.present
 end

rescue => e
 show_error_dialog_and_exit(e)
end

Monkeybars controllers are typically used as singleton classes; you generally do not need
multiple instances. (A notable exception is the use of nested controllers where a frame or
panel has multiple subcomponents that are each instances of the same class, a topic
beyond the scope of this article. Basically it allows you to take a complex set of frames,
panels, and components and break it down into a set of individual MVC tuples. An
example might be an address book, were a top-level Swing frame renders multiple
address objects, each being an instance of an address_entry MVC set.)

Executing the code
With the code in place and a suitable data file we can run the program. We'll use a
rawr Rake task to create an executable jar file. When we ran rawr install at the
start of the project it created a Main.java file under
src/org/rubyforge/rawr/. To run the program from a jar, there needs to be a
Main Java class; rawr generates this file containing basic code that looks for and
interprets a main.rb file. (Or, if one is not found, it invents one in-line and uses that
instead.)

The Rake task rawr:jar will compile this code and package up our files into a jar. To
coordinate this there is the file build_configuration.yaml. Prior to creating the
jar this should be edited to reflect the details of the application.

To kick off our program, first we build the jar file:

$ rake rawr:jar

and then we invoke it

$ java ­jar package/deploy/monkey_see.jar

We should see the flash card screen roll down from the top right corner, stay for a bit,
then roll back up.

When the window is visible, we can use the menu items to edit the currently displayed
card. To quit, we use the Quit menu item (Alt+Q, if you've added the accelerator
key).

Some caveats about the generated jar file

The jar file created by rawr:jar does not contain everything needed to execute the
program. In particular, any jars containing libraries needed for the program (such as
jruby­complete.jar and monkeybars­0.6.4.jar) are not bundled in
monkey_see.jar.

When rawr:jar runs, it creates a set of files under package/deploy/. These are
the files needed to execute the application, and must be distributed together. The
build_configuration.yaml file allows you to steer what files are placed n the
jar, and what files and directories are copied over to the deployment directory. The
data/cards.rc file, for example, could be bundled into monkey_see.jar, but as
the application allows editing it should be left as an external file so that changes may be
written back.

Conclusion
The development of JRuby as a robust, viable alternative to the traditional C
implementation of Ruby means that Ruby GUI toolkits can move beyond C-based
options and use UI tools available to the Java platform. As Swing is a standard part of a
Java runtime installation, Swing components give (J)Ruby a mature and readily available
graphical toolkit. Employing the Java platform means such applications can be readily
built, packaged, and distributed to end users on multiple platforms. When combined with
the Monkeybars library, Ruby developers can build testable, maintainable, complex
desktop applications with increased ease.

The example here was deliberately small, intended mainly as introduction to what is
possible for JRuby Swing GUI development. More information about Monkeybars, with
larger examples, may be found at the http://www.monkeybars.org

Resources
● API documentation, tutorials, and examples for the Monkeybars library may be

fund at http://www.monkeybars.org
● JRuby document and downloads are available at http://jruby.org/

http://ww.monkeybars.org/

	Why Swing instead of SWT?
	Cross-platform Desktop Application Development with JRuby and Swing
	Ruby for the desktop
	Available Toolkits
	Considerations for selecting a GUI library
	Leveraging an existing technology: Java
	Monkeybars
	Using 3rd-party libraries
	Key model methods
	Mapping data
	Managing the Swing object
	Handling requests from the controller
	Some caveats about the generated jar file

	Resources

